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The Korteweg-de Vries equation is numerically solved by using the Fourier expansion 
method, the Suite-difference methods, and other methods. By applying each method to a 
common initial-value problem, the accuracies of computations are compared with each 
other. The Fourier expansion method is found to be the most accurate and effective method. 
The details of the recurrence of an initial state, discussed by N. J. Zabusky and M. D. 
Kruskal, are examined. 

1. INTRODUCTION 

The Korteweg-de Vries equation has been found to describe various kinds of 
phenomena such as acoustic waves in an anharmonic crystal, waves in bubble-liquid 
mixtures, magnetohydrodynamic waves in warm plamas, and ion acoustic waves. 
Several methods of solving this equation numerically have been proposed. Some 
of them are based on the finite-difference methods [I, 2,3], where we approximate all 
of the differentials by appropriate finite differences and reduce the partial differential 
equation to a set of algebraic equations. 

A numerical procedure competitive with the finite difference method is the Fourier 
expansion method [4, 51. In this method, the unknown function is expanded in terms 
of the Fourier series, and the original partial differential equation is reduced to a set 
of ordinary differential equations for the Fourier coefficients. The hybrid methods, 
where the Fourier expansion is partially employed, have also been proposed 
h7, 81. 

This paper is concerned with the Fourier expansion method compared with the 
other methods. Zabusky and Kruskal [I] solved the K-dV equation using a finite- 
difference method, and showed the existence of solitons which propagated with their 
own velocities, exerting essentially no influence on each other. They also discussed 
the recurrence of an initial state and guessed that the K-dV equation led to the 
recurrence. All of the methods noted above are applied to this problem, and are 
compared with each other for accuracy of the numerical computations. 
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2. FOURIER EXPANSION SOLUTIOK 

Zabusky and Kruskal solved the K-dV equation 

with 6 = 0.022 and the initial periodic condition 

u(t = 0, x) = cos(nx), o<x<2. 

The Fourier expansion corresponding to this is 

u(t, x) = f aa exp(iAx), 
k=-m 

with the initial condition 

ak@) = Sk&& 

where a,,, is the Kronecker delta. Substituting Eq. (3) into E 

1 m --- 
2 

irk C alcbmaqyb $ i75-362k3a,G 
m=-cc 

Equations (4) and (5) lead to a,(t) = 0 for all t. 
In order ts make truncation, we introduce the maximal wavenumber k,, 

by 

ak(t) = 0 (I k I > kmax)~ 

From the relation a-, = a:, which is obtained from the reality condition on U, it is 
sufffcient to determine a, (1 < k < km& from Eq. (5). The time integrations of 
Eq. (5) are made by using the Runge-Kutta-Gill method. If we neglect the nonlinear 
term in Eq. (5), we obtain a,(t) oc exp(irr362k3t). From this we guess the temporal 
interval At by r3S2k&ax At 5 1. 

The K-dV equation has the conservation laws 
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If we substitute Eqs. (3) and (6) into the laws, the first law is easily shown to be 
automatically satisfied and the other laws become 

I 
kmax 

(2% = 4 C aha: - 1 , 
k=l 

‘km, 
- 4 C k2a,a$ + 1 . 

k=l 
(8) 

Almost all of the computations are made by using numbers of 8 figures (single 
precision) or, when more accurate results are required, by using numbers of 16 figures 
(double precision). 

3. RESULTS OF THE FOURIER EXPANSION METHOD 

If we neglect the dispersive term in the K-dV equation (l), the nonlinear term 
makes the derivative &A/&Y infinite at t = l/ ?T, the breakdown time. Let us write 
time t in the form of nt. Figure 1 shows the spectra obtained from the numerical 
computations using numbers of 16 figures, and setting km,, = 70 and z- rlt = 
8 x 10-4. The spectrum of high harmonics is roughly steady for n-t 2 3. This fact 
ensures the convergence of the present solution, that is to say, the error arising from 
the truncation (6) does not increase with the lapse of time. The waveforms recovered 
by using Eqs. (3) and (6) are shown in Fig. 2. Figure 3 shows the space-time trajectories 
of soliton peaks. The results shown in Figs. 2 and 3 are in good agreement with those 

FIG. 1. Temporal development of spectrum; k,,, = 70, &t = 8 x 10-4, and 16 figures. 
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FIG. 2. Temporal development of waveform; k,,, = X3, 7idt = 8 x 10ml, and 16 figures 

FIG. 3. Soliton-peak trajectories corresponding to Fig. 2. 

of Zabusky and Kruskal. Figures 4 and 5 give the waveforms and the trajectories of 
sohtons at the subsequent stage. The time n-t = 30.4 in tbe figures is the recurrence 
time introduced by Zabusky and Kruskal. The resuh cQrrespo~di~g to Figs. 4 and 5 
was not given in their paper. They guessed that at the recurrence time, all the sohkons 
overlapped at a common spatial point and the concentration of the solitons almost 
reconstructed the initial monochromatic wave. We see from Figs 4 and 5 that at 
rrt = 30.4 all the solitons tend to focus at a common spatial point, but none of the 
solitons loses its identity during collisions of solitons. As shown in Fig. I, the spectrum 
at ‘TT~ = 30.4 is far from / a, 1 = &,/2, which indicates the reconstruction of the 
monochromatic wave. 
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FIG. 4. Waveforms at the subsequent stage; k,,, = 70, vAt = 8 x 10-4, and 16 figures. 

X 

FIG. 5. Soliton-peak trajectories corresponding to Fig. 4. 

In the computations noted above, the conservation laws are 

c, < 2 x 10-12 and c, < 5 x 10-11 for 0 < 77-t < 34, 

where C, and C, have been given by Eqs. (8). In order to examine the truncation errors 
arising from approximation (6), we made the computations changing the maximal 
wavenumber km, . In the computations, numbers of eight figures were used. Figure 6 
shows how the waveform converges to the correct waveform with increasing km,, 
where we have regarded u(t, x; km,, = 70, v dt = 8 x lo-*, 16 figures) as the correct 
waveform z+,rrect(t, x). The analytic solution [9] may give the correct waveform. 
We, however, do not empIoy the analytic solution, because the procedure for obtaining 
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FIG. 6. Convergence of the waveform to the correct form with increasing k,,, . ulcmax is cal- 
ctiated by using numbers of 8 figures. ucorreet(t, x) = u(t, x; k,, = ‘70, wAt = % x IO-*, 16 figures). 

e values of u from the solution is rather complicated. Figure 5 sho 
truncation errors become slight as k max increases. By changing the temporal inter 
7~ At, the errors by the Runge-Kutta-Gill method for the integrations of Eq. (5) 

e 7 shows how the waveform approaches the correct wavefor 
The integrations of Eq. (5) using TT dt > 10-2*4 led to 
the values of ak(t) oscillated and diverged with increas 

Figures 6 and 7 show that the integration of Eq. (5) using km,, = 
4 x 1CP ‘u 1O-2.4, and numbers of eight figures gives a sufficiently ac 

FIG. 7. Convergence of the waveform to the correct form with decreasing mdt. uAt is cakukted 
by using k,, = 50 and numbers of 8 figures. ucorrect is ilre same as that in Fig. 6. 
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4. FINITE-DIFFERENCE METHODS AND OTHER METHODS 

The schemes compared with the Fourier expansion methods are 

I. Zabusky-Kruskal scheme [l]: 

- 2u,+, + 2uj”_, - uj”-2) (j = 1 

where uj” = u (t = n At, x = (j - 1) AX) and (J - 1) Ax = 2. 
II. Greig-Morris scheme [2]: 

(9) 

where j = 1 - J and f = ~~12. If we set J even and use the cyclic boundary condition, 
the implicit scheme (10) handles easily. 

III. Gazdag scheme [6]: Reference [6] is so short that the authors could not give 
in detail the procedures used to execute the scheme. This method may consist of the 
following two steps. We compute an intermediate solution by 

where 

u”(t+dt,x)=u(t,x)+tdt+Z~ l a2u /4t2 + . . . (11) 

au a24 -= 
at -u aX’ at2 

(12) 8% - g + g) = 2u g,” + u2 g , *-* * 

Next we solve the linear equation 

au - 42 a”u 
at ax3 3 

which has the analytical solution 

u(t + dt, x) = Re k& [l u(t, x') exp(--t5Tk~') C&C'] exp(in%2k3dt + i~kc)l, (13) 
I 

where Re(f) means the real part ofJ: We put u(t, x’) = zZ(t + At, x’). 



FOURIER SOLUTION OF K-dV EQUATION 209 

In expansion (11) we neglect the temporal derivatives of fourth order or 
The spatial derivatives in Eq. (12) are approximated by 

where (9 - I) Ax = 2. If in Eq. (13) we evaluate the value of u(t, x’) only on the 
iscrete points j = 1 N J, and make the appropriate truncation of high harmonics, 

the FFT (Fast Fourier Transform) technique is applicable twice. We evaluate the 
right-hand side of Eq. (13) using the FFT technique. The high harmonies with 
k > k,, are neglected, because the inclusion of high harmonics leads to unphysical 
divergences in computer. We made computations changing the values of J and .Icms,X 
within a limitation J > km,, , and found that if we set J = 29 + i = 513, the case 
k max = 32 gave the best results. 

5. COMPARISON 

We made computations using the Zabusky-Kruskal, Greig-Morris, and Gaz 
schemes for 1P3 3 rr At 3 1O-5 and Z/ZOO 3 Ax >, 2jSOO. Table I gives the results 
where rr At = IO-4 and .4x = 2/400 - 2/512. The values of C, and C3 in the schemes 
of Zabusky and Kruskal, Greig and Morris, and Gazdag have been defined in Eqs. (7)9 
while those of the Fourier expansion method have been defined in Eqs, 
derivative au/ax required to determine C, in the schemes of Zabusky and 
Greig and Morris, and Gazdag is calculated from 

au/ax I; = (I& - &)/(~Ax). 

The values of C, and (73 in the table show that the Fourier expansion metho 
numbers of 16 figures gives the most accurate solution. Let us measure the error of 
each scheme by 

where p2rr At = 1, (J - 1) Ax = 2, and u;,,,,,,,~ = u (nt = 1, x = (j - I) AX; 
k mBX = 70, z= At = 8 x 10-4, 16 figures). The values of E are included in Table 1. 

The computations using various sets of (At, AX) showed that there was Little corre- 
lation between C2 and (At, Ax). The’Zabusky-Kruskal scheme (9) with v At = IO-” 
and AX = 2jSOO gives, among the schemes other than the Fourier expansion method, 
the most accurate waveforms, which are in good agreement with those in Figs. 2 and 3, 
The Zabusky-Kruskal scheme, however, is numerically unstable and does not give 
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TABLE I 

Comparison between the Fourier Expansion Method and Other Methods 

Zabusky- Greig- 
Kruskal Morris Gazdag 

Fourier expansion 
method 

7IAt 10-4 10-d 10-4 4 x 10-a 8 x 10-4 

AX 21400 21401 2/512 

k max 50 70 

No. of figures 

8 8 8 8 16 

Cg(7it = 1) 3.2 x lo-* 4.2 x 1O-5 1.0 x 10-a 1.0 x 10-s 6.6 x 10-16 

C3(7-d = 1) 2.1 x 10-a 2.0 x 10-z 3.3 x IO-2 1.6 x lo-” 1.1 x 10-15 

E 9.3 x 10-a 9.5 x 10-4 8.9 x 1O-4 2.4 x 1O-B 0 

the solution for rrt > 17. The Greig-Morris scheme and the Gazdag scheme are 
numerically stable, but the accuracies of computations become so much worse with 
increasing time that we have no confidence that the numerical solutions at large times 
are correct. 

In addition to the schemes noted above, we examined two more schemes. One is an 
implicit finite-difference scheme proposed by Coda [3]. The other is the Taylor- 
Fourier expansion method proposed by Canosa and Gazdag [8]. Detailed procedures 
for putting the schemes into execution are not given in the respective papers. The 
Goda scheme may not be appropriate to the present problem, where the waveform 
shows a rather complicated variation with the lapse of time. The Canosa-Gazdag 
scheme may consume too much computation time to obtain the solutions with 
sufficient accuracy. 
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